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Short Papers

Even- and Odd-Mode Impedances of Coupled Elliptic
Arc Strips

B. N. DAS anp K. V. S. V. R. PRASAD

Abstract — A derivation of the expression for even- and odd-mode im-
pedances of coupled elliptic arc strips between grounded, confocal elliptic
cylinders, and above a grounded elliptic cylinder, symmetrically located
with the minor axis, is presented. The analysis is based on TEM-mode
approximation. The Green’s function formulation is used to obtain varia-
tional expressions for the even- and odd-mode capacitances for the more
general case of different dielectrics on the two sides of the coupled strips.
Numerical results are presented for coupled elliptic and circular cylindrical
arc strips. It is also shown that the formulation can be used to find the
effect of environmental changes on an otherwise planar structure. ‘

1. INTRODUCTION

~ Some investigations on elliptic and circular cylindrical strip-

lines have been reported in the literature [1]-[4]. The impedance :

_ of warped lines can be determined from the results of the analysis
of such lines by assuming that the radii of curvature are very
large and the arc lengths remain finite. Wang [1] presented
impedance data of cylindrical and cylindrically warped strip- and
microstrip lines from numerical solution of Laplace’s equation.
He used the results of the analysis to calculate the effect of
environmental changes on the impedance of an otherwise planar
structure. The numerical results presented by him show a marked

deviation from those calculated using the formula for planar
structure. From physical considerations, however, it may be con--.
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cluded that the impedance of a warped line should not differ
appreciably from that of an otherwise planar structure. It has
been established that the results obtained by Wang for warped
lines are not correct [2], [4]. It is worthwhile to investigate the
effect of environmental changes on the even- and odd-mode
impedances of an otherwise planar structure. ‘Expressions for
these impedances can be obtained from the analysis of two
coupled elliptic arc strips between confocal elliptic grounded
cylinders. To the best of the author’s knowledge, no investigation
on:coupled arc strips between grounded elliptic and circular
cylinders or above such surfaces has been reported in the litera-
ture.

In the present work, a method of derivation of the expressions
for‘the even- and odd-mode impedances of coupled elliptic and
circular cylindrical arc strips between two dielectric layers is

presented. If the trangverse dimensions of the structure are small

compared to the operating wavelength, quasi-TEM-mode ap-
proximation can be used for the analysis. The potential function
for the even- and odd-mode configurations is derived using a
Green’s function formulation and TEM-mode "approximation.
Vatiational expressions for the even- and odd-mode capacitances
are found, assuming suitable charge distribution on the arc strips.
Formulation is made for the general case of elliptic arc strips
betwéen two confocal grounded elliptic cylinders. The corre-
sponding expressions for the case of coupled elliptic arc strips
above a grounded elliptic cylinder are found by assuming that the
upper cylinder is moved to infinity. The even--and odd-mode
impedances of coupled cylindrical strip- and microstripline are
then found from the analysis of tbe elliptic line by assuming that
eccentricity is equal to zero.

Numerical results on the even- and odd-mode impedances for
1) coupled elliptic arc strips between grounded elliptic cylinders
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and above a grounded elliptic cylinder, and 2) circular arc strips
between grounded circular cylinders and above a grounded cylin-
der are presented. The effect of environmental changes on an
otherwise planar structure is found by the method suggested in
the literature [4]. A comparison between the numerical results on
such warped lines and planar structure is presented.

II. DERIVATION OF THE EXPRESSIONS FOR EVEN- AND
ODpD-MODE IMPEDANCES

Fig. 1 shows two elliptic arc strips 4B and CD located at the
interface between two dielectric media having relative dielectric
constants €; and e, sandwiched between two earthed elliptic
cylinders P and Q. The interface between the two dielectrics is
an ellipse and all the three ellipses of Fig. 1 are confocal. It is
assumed that there are electric walls at w =19, and 7= (7 — ).
For a TEM-mode approximation, the Poisson equation relating
the potential function ¥ to the charge density p is given by [4]

- -1 | 5 [e>-1 a¥
1-v2 9@

kZ(q)Z_\I,Z) 5(—5

L0 [ =% v
v ®2—1 0¥

where ® = constant and ¥ = constant represent, respectively, the
sets of confocal ellipses and orthogonal hyperbolas. € is the
dielectric constant of the material and k is the focal distance.
The solution of (1) is found for a source in the form of a line
charge per unit length located at (®,,¥,). Assuming that the
charge is distributed over a surface whose cross section is in the
form of an elementary curvilinear square of dimension A® = A,
and AY = A,, centered at (®,,V¥,), the charge density p(®, ¥) is
given by

=-%e.y) O

P(q):\l') = T(\II)/hlthlAZ

where
o2 —¥?
h=kyf——
' 0> -1
02— P2
hy=ky| ——— .
2T 1o
With the substitution
® = Cosh ¢ (2a)
¥ = Cosnq (2b)
then (1) reduces to
v . PV
3—$2+3—rn2=_7/€AgAT" (20)
The elliptic boundaries shown in Fig. 1 are given oy
¢ =Cosh™!(a, /k) (3a)
+
£, = Cosh™ (ik—”l) (3b)
+
£, =Cosh™! (El—k&) (3¢)

where k is the focal distance.
The even- and odd-mode characteristic impedances can be
determined from the expression of the form

z=2z,(c,/Cc)"” (4)
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Coupled elliptic arc strips between two confocal elliptic cylinders

Fig. 1.

where C and C, are the line capacitances of the transmission line
with and without the dielectrics, respectively, and Z, is the
characteristic impedance of the corresponding air line structure.
For an infinitesimally thin conductor located at £=§,, the
variational expression for the line capacitance is given by [5]

1 _ [le(w)e(n)G(&,nlé,. ) dndy 5
C 2
[ Jo(n) dn]

where G(§,9}§,,7') is the Green’s function,
The charge distribution appearing in (5) can be assumed to be
of the form :

R otherwise,

where

Na— M3
p=tt (6)
The expressions for the even- and odd-mode characteristic im-
pedances can, therefore, be determined from the evaluation of the
corresponding Green’s functions.

For the even-mode configuration, the structure of Fig. 1 gets
split into two identical half sections by a magnetic wall of
n = /2. The analysis if carried out by considering the right-half
section. The boundary and continuity conditions for the even-
mode configuration are given by [6]

V(é,m)=0 (72)
V(é,,m)=0 (7b)
v
A =0 7c
o n=u/2 ( )
ln=my =0 (7d)
av av
= =2 7
Mle—g; I e-g; (7¢)
v av
€061 E . = €o€, % e (75

For the odd-mode structure, the magnetic wall at n=7/2 is
replaced by an electric wall in Fig. 1. The analysis is carried out
by considering the right-half section. The boundary and continu-
ity conditions are the same as above, except (7¢) is replaced by

the equation
V0gmnya = 0.

(7g)

Equation (2c) is solved using (7a)-(7f) and assuming that



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-32, NO. 11, NOVEMBER 1984

p(£,,1)=38(n—n,) to obtain the even-mode Green’s function as

G, m)=- X

n=o

-Sinh(m, (& - £)) Sin(m,(n—mn,))
Sin(m,(w-m)), &<é<é,

S5

neo (2n+1)me A,

-Sinh(m,(§ - §,))

.Sin(me(n_nl)) Sin(me("'—"h)),
to<é<t, (8b)

4
(2n+1) oA,

Sinh(m, (£, -£,))
(8a)
Sinh( m (& — 51))

where

A, = [ & Sinh(m, (&, ~ &)) Cosh(m, (&, — £&))
+¢, Cosh(m, (&, — £&)) Sinh(m, (& — £))]

_(@rn+l)a2

M (/2= my)

Using (4), (5), (6), and (8a), an expression for the even-mode
impedance is obtained as

m,A\ A
Joz( 3 )sz[me("la_"h"‘i)}

. (2n +1)[ S COth[ me(go - £1)] + € COth[me(£2 + go)]]

A 1/2
w0 Joz(mﬁ )Sinz[me("h_"h‘*‘%)]

20 @n+1)[Coth[ m,(£, - &)]+Coth[ m, (¢, —£,)]]

®)

where J,(X) is the Bessel function of the first kind of order zero.

Using (2¢), (7a), (7b), and (7d)-(7g), and following a similar
procedure, an expression for the odd-mode characteristic imped-
ance is obtained as

m,A\ . A A
Jf(T) Sin’ [mo(ns =Mt 5)]

“nle Coth[m, (£, — £)]+ ¢, Coth[ m, (£, —£,)]1]

A A 1/2
L3 (75" s (1 -5
n=0 n[COth[mo(so - g1)]_}'COt‘h[”10(52 - go)]]
(10)
where
nw
m. =

('”/2_'11) ’
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Fig. 2.(a) Variation of even- and odd-mode impedances as a function of o
for coupled elliptic striplines, 74 — 13 = 10°, even-mode characteristic

impedance, ---- odd-mode characteristic impedance.
Curve € € n/a P/ K/a M
a 1.0 10 0.2 0.5 0.5 0
b 1.0 10 .02 0.5 0.5 0
¢ 99 256 0.2 0.5 0.5 0
d 99 256 0.2 0.5 0.5 0

(b) Variation of even- and odd-mode impedances as a function of « for
coupled elliptic microstriplines, ny — 13 = 10°. even-mode characteris-

tic impedance, ---- odd-mode characteristic impedance.
Curve € €2 n/a K/a m
a,d 1.0 1.0 0.25 0.75 0°
b,e 1.0 1.0 0.25 0.50 0°
aof 1.0 1.0 0.25 0.25 0°
87 9.9 1.0 0.25 0.75 0°
h,k 9.9 1.0 0.25 0.50 00
il 9.9 1.0 0.25 0.25 0°

III. NUMERICAL RESULTS

Case 1: Coupled elliptic arc strips between grounded elliptic
cylinders—In this case, twice the angle (7/, —n,4) equal to «,
say, represents the angle between the nearest edges of the coupled
arc strips symmetrically located with respect to the line 5 =7/;.
It can be shown that 5, = tan~'(coth £, tan#,), where 0, is the
angle made by the line joining the edge of the strip to the origin
with the positive direction of the major axis of the ellipse. Using
(9) and (10), the variation of even- and odd-mode impedances
with a is computed for ¢, =€, =1.0, P, /a,=02, P, /a; =05,
k/a, =05, 5,=00, and n, —n, =10° The calculation is re-
peated for ¢, =9.9,¢, = 2.56. The results are presented in Fig,
2(a). The relation between (n, —n3) and §, and 8;, the angles
made by the lines joining the two edges of the strip to the origin
with the positive direction of this major axis of the ellipse can be
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obtained from the formula [4)

_, | Coth{, (tanf, —tané,)
1+Coth? £, tan§, tanf, |

(11)

N4 — N3 = tan

If 6, is the angle made by the radius vector passing through the
center of the arc strip and 2A# is the angular width of the arc
strip, then
6,=0 +A8
0,=0 —Af.
Case 2: Coupled elliptic arc strips above a grounded elliptic

cylinder— Assuming that §, - o0 and ¢, =1.0, (9) and (10) for
the even- and odd-mode impedances reduce to the form

A
o Joz(—-*mze )Sinz[me(ns—nﬁ%)]
Z,,=480{ Y.

n=0 (zn +1)[€1 COth[me(Eo - gl)]+1]

A A 1/2
0 JOZ(LWE_) Sin’ [me("h —m+ 3)]

neo (2n+1)[Coth[ m, (&, —&)]+1] (12)
o (2R sim mo(m-,,ﬁé)]
For =240 ngo (n[ezlC)oth[n[u,(éo—51)]+1]2
w J2 m,A Sinz[mo("h“m—f—é)] 172
.ngo (n[2Co>th[mo(§o_gl)]+1]2 (13)

Using (12) and (13), the variation of even- and odd-mode imped-
ances with a of coupled elliptic microstripline is computed for
€ =10, p; /a; =025, 7, =0° n, — 9, =10°, with k/a, = 0.25,
0.5, 0.75 as parameter. The calculations are repeated for ¢; = 9.9.
The results are presented in Fig. 2(b).

Case 3: Circular arc strips between grounded circular cylinders
—As k/a;— 0, the ellipses and hyperbolas degenerate into
circles and radial lines, respectively. It is found from 3(a), (b),
and (c) that, for k/a; =0

oy ln[l—i- Lt (14a)
a
_ a+py/a
& _g"_ln[_—1+pl/a1 ] (14b)
and ny =06, (14c)
Mg = 04- (14d)

Using (9) and (10) and (14a)-(14d), the variation of even- and
odd-mode impedances with « is computed for ¢ =¢€,=1.0,
pi/a; =02, p, /a, = 0.5, 5, = 0.0, and 5, — n, =10°. The calcu-
lation is repeated for ¢, =99 and €, =2.56. The results are
presented in Fig. 3.

Case 4: Circular arc strips above a grounded circular cylinder
— Using (12), (13), and (14a), the variation of even- and odd-mode
impedances with « is computed for ¢, =1.0, 5, =0.0, p, — 3 =
10%, p,/a, =025, 0.5, 0.75, and 1.30. The calculations are
repeated for €, = 9.9. The results are presented in Fig. 4.

In all the above cases, calculation is also made for 7, =10°
and the deviation from the results presented is negligibly small.

Case 5; Warped coupled strip and microstrip lines—The char-
acteristic impedance of warped stripline of strip width W and the
ground plane spacing b can be obtained from the results of case
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Fig. 3. Variation of even- and odd-mode impedances as a function of « for
coupled cylindrical striplines, 14 — 13 = 109, even-mode characteristic
impedance ---- odd-mode characteristic impedance.
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a,b 1.0 10 0.20 0.50 0 0
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Fig. 4. Variation of even- and odd-mode impedances as a function of & for
coupled cylindrical microstriplines, 1, — 13 =10 even-mode char-

acteristic impedance ---- odd-mode characteristic impedance.
Curve Sl € n/a K/aqy ™
a,e 1.0 1.0 1.30 0 0
b, f 1.0 1.0 0.75 0 0
g 1.0 1.0 0.50 0 0
d,h 1.0 1.0 0.25 0 0
i,m 9.9 1.0 1.30 0 0
In 9.9 1.0 0.75 0 0
k,p 9.9 1.0 0.50 0 0
1,9 9.9 1.0 025 0 0

3 by assuming that the radius of the cylindrical stripline is very
large and the distance b( = p,) between the two ground planes
remains finite. Then
A - 1
P R PR

Here, b= p,

or
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Fig. 5. Variation of even- and odd-mode impedances as a function of W/b
and W/h for coupled warped striplines and microstrip lines, respectively.
Cohn

coce

X X X Bryand and Weiss
even-mode characteristic impedance
---- odd-mode characterisitc impedance
Curve Description ¢ €& S/b S/h
a,e  Coupled warped striplines 1.0 1.0 01 —
b,c  Coupled warped striplines 10 1.0 05 —
d,f Coupled warped microstriplines 100 1.0 — 0.2

where S is the edge to edge separation of the planar strips. When
7 =0

Ny — M3 T S w
MMty = .

It can be further approximated that

go-gl=1nl1+ﬂ]=i’l=,41 (152)
4 a

1+P2/“1] P~
—¢ =In = =A4,. 15b
Lk ~[1+P1/a1 a 2 (15)

In this case, the expressions for the even- and odd-mode imped-
ances of warped coupled striplines reduce to the from

00 Joz(meBI)Sinz[me(%_Bl—z—il)]

Z,, = 480-
o¢ ,EO (2n+1)| ¢ Coth(m,A4;)+ ¢, Coth(m 4,)]

l g ‘ 172
00 “l)(“le‘El)S.II 16(2 }Gl 22 )

>

weo (2n+1)[Coth(m,A4,)+Coth(m, A4,)]

(16)

© Joz(moBI)Sinz [ma(% —’Bl—z_i_)]
)3 1/]

w0 1| & Coth(m,A4;)+¢, Coth(m,A4,)]

Z,, = 240-

1,2
J;(moﬁl)Silll[ma(%_Bl "—SL—)]

B 2ay

) EO n[Coth(m,A4,)+Coth(m,A4,)] ~(17)

Using (16) and (17), the variation of even- and odd-mode imped-
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ances with W/b is computed for a symmetric stripline with
¢ =¢,=10, p,/a,=0005, p,/a, =001, n,=0.0, and S/b=
0.1, 0.5 as a parameter and the results are presented in Fig. 5. For
the sake of comparison, the numerical results obtained by Cohn
for a planar structure [7] are also presented in the same figure in
the form of circles.

Following similar procedure, the variation of even- and odd-
mode impedances of a microstripline is computed as a function
of W/h (h=p)) for ¢ =10.0, 9, =00, p, /a; =0.01, and S/h
= 0.2 and the results are presented in Fig. 5. The results obtained
by Bryant and Weiss [8] for a planar structure are also presented
in the same figure in the form of crosses. There is a good
agreement betweens the two sets of results.

IV. CONCLUSION

Agreement between the results obtained by the present method
for the warped coupled strip- and microstriplines with those of
Cohn for a planar symmetric coupled stripline, as well as Bryant
and Weiss for a planar coupled microstripline, justifies the valid-
ity of the analysis. It is worthwhile to mention that computation
is also made for n, =10% and the deviation of corresponding
numerical results from those for 1, = 0° is negligibly small. The
advantage of the method of analysis presented in this paper is
that the same general formulation developed for coupled ellipti-
cal stripline structure can be applied to the coupled cylindrical
strip- and microstriplines of elliptic and circular cross section.
The method of analysis presented in the paper has enabled
evaluation of even- and odd-mode impedance for different dielec-
trics on the two sides of the coupled strips.
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Abstract —Design data are given for multisection double-plane step
transformers between X- (8.2-124 GHz), Ku- (124.-18 GHz), K-
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